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This approach is called by us the finite-difference time-domain
(FD-TD) solution of Maxwell’s curl equations. Our publications
through the years [1]-[8] have established that FD-TD can accu-
rately model electromagnetic-wave penetration and scattering
interactions with complex metal, dielectric, and biological ob-
jects. Our most recent work [9] demonstrates high accuracy (+ 1
dB over a 40-dB dynamic range) in modeling the scattering
properties of a nine-wavelength three-dimensional scatterer of
complex shape. FD-TD models having in excess of 109 space cells
have been successfully run [10].

We wish to call this to the attention of the authors of the above
paper so that in future articles they may place their work in
proper perspective, and properly inform their readers of the
state-of-the-art.
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Comments on “Application of Boundary-Element
Method to Electromagnetic Field Problems”

N. MORITA, SENIOR MEMBER, IEEE

The above paper! has explained a general formulation of the
boundary-element method (BEM) for analyzing two-dimensional
electromagnetic fields, and has presented numerical examples for
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some boundary shapes to show that the BEM is a very powerful
numerical method for solving electromagnetic field problems. It
gives accurate results with far fewer nodes than the finite-element
method, and can also treat field problems in unbounded regions
without any additional complications.

I wonder, however, why such an argument is necessary now.
The BEM is not a new method, but just the surface integral
equation method which has already been proved to be a very
useful method in the areas of electromagnetic and other fields.
The literature is extensive on the analysis of electromagnetic field
problems by integral equations, on discussions of integral equa-
tions themselves, on their discretization methods, etc. References
[1] and [2] were probably the first to present a practical and
numerical technique using integral equations for electromagnetic
field problems. Several good books and review papers describing
the use of numerical techniques for integral equations have also
been published [3]-[6].

The discretization method in the BEM is explained in detail in
the above paper.! The method shown is, however, just one of
many methods now available. It is the one based on the ap-
proximation of unknown functions by means of the triangular
subsectional functions, which has been proved to be more effec-
tive for some cases than the step function approximation [3], [7],
[8], [12]. Of course, there are many other better functions to be
used depending upon the problem to be solved.

In Section V of the above paper,! an integral equation formula-
tion for scattering from dielectric bodies is presented. However,
the problem of scattering from material bodies, such as dielectric
and gyrotropic bodies, has been treated extensively in the past
literature. Various kinds of integral equations for analyzing these
problems are now available [9]-[14]. The set of equations given in
the above paper® is essentially the same as one of those used in
the past [11], [15], [16], and can easily be derived using the
integral relation on the incident field. In addition, the equation
shown is inferior to ones used in the past since the term involving
the incident wave is unnecessarily complex. Furthermore, the
problem of erroneous resonant solutions involved in these types
of equations is not stated at all. The problem of non-uniqueness,
which is often associated with simple surface integral equations,
has been discussed by many researchers [17}-[22], [13].

I would like to add that the above paper' treats only the
two-dimensional problems, even though a lot of numerical results
have already been given for three-dimensional electromagnetic
field problems. (Some of these can be found in the list of
References.)

Finally, I don’t think that the whole literature on the integral
equation formulation can be neglected by using the “anesthetic”
by the name of the “boundary-element method,” of which only
the label is new.

The author wishes to thank Prof. R. F. Harrington for careful
reading of the manuscript.

Reply? by Shin Kagami and Ichiro Fukai’

The authors of the original paper! were aware of the previous
works on the electromagnetic field analysis using the boundary
integral equation method (BIE) and they consider that the
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boundary-element method (BEM) is based on BIE. However,
they thought that the BIE was a common numerical technique
already established and confirmed generally in this field, so that
they did not refer to it individually.

In the original paper, the authors aimed to emphasize the
facility of the application of the BEM, which is an “element
method” and whose discretizing technique is like that of the
finite-element method (FEM). These facts cause the BEM to
become a very powerful numerical method. It is very easy to
perform programming for computers. In addition, it adopts sim-
ple and general expressions (for example, the equation having a
general variable-a single scalar potential), so that the formulation
is performed about the scalar Helmholtz’s equation, and when
actual problems are treated, a proper boundary condition is
imposed on the above potential. Moreover, the same program can
be used for different cases (for example, for the case of sound
problems). Its govering equation is also the scalor Helmholtz’s
equation, but its boundary condition is different from that of the
electromagnetic field problem.

Finally, the authors would like to thank Dr. N. Morita for his
remarks and for providing [10], [20], and [21].
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Comments on “Limitations of the Cubical Block
Model of Man in Calculating SAR Distributions”

MARK J. HAGMANN, MEMBER, IEEE

The above paper' raised some serious questions regarding the
accuracy of three-dimensional block model solutions obtained
using a pulse-function basis. While I am in qualitative agreement
with about half of the numerical results presented in the paper, I
most strongly disagree with most of the interpretations which the
authors have made using those results. It is my belief that it is
possible to obtain high accuracy with block model solutions if
sufficient care is used in their implementation. I have chosen to
use a pulse-function basis with block models of man since this
appears to allow the model to have much greater detail than is
possible with more elaborate bases.

The paper incorrectly stated that I have given “an upper limit
on the dimensions of cells for the required accuracy” and inferred
that such a limit was satisfied in their solutions. In earlier work
with one of the authors (Durney), it was shown that the size of
each cell must not be much greater than the reciprocal of the
magnitude of the complex propagation vector, but this was
presented as a condition that is necessary but not sufficient for
convergence [2]. Pulse functions are only appropriate if the
electric field is slowly varying over the volume of each cell. The
electric field will have sizable variation within some objects even
in static solutions. One case in point is the dielectric cube which
the authors unfortunately chose to use as an example.

The solution for a 27-cell block model of a dielectric cube, as
presented in the article, is very far from convergence. While an
exact solution is not available for the dielectric cube, it is gener-
ally known that the electric field is highly heterogeneous near the
corners and edges. While I have not obtained a solution for a
cube having the exact parameters used by the authors, the results
of earlier studies [3], [4], as well as recent work using as many as
2744 cells, suggests that the fields near corners and edges are
sufficiently intense that the true average SAR would be several
times greater than that calculated for a 27-cell block model. I am
not surprised that subdividing the cell at the center of the cube
had little effect since it is well known that at low frequencies the
electric field at the center of a cube is the same as that at the
center of a sphere, and the solution for a small number of cells is
more like that for a sphere than a cube. I am also not surprised
that subdividing a cell at a corner or edge of the cube caused a
significant change in the SAR since these are regions where the
27-cell solution has the greatest error.
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