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This approach is called by us the finite-difference time-domain

(FD-TD) solution of Maxwell’s curl equations. Our publications

through the years [1]–[8] have established that FD-TD can accu-

rately model electromagnetic-wave penetration and scattering

interactions with complex metal, dielectric, and biological ob-

jects. Ourmost recent work [9]demonstrates high accuracy(~ 1

dB over a 40-dB dynamic range) in modeling the scattering

properties of a nine-wavelength three-dimensional scatterer of

complex shape. FD-TD models having inexcessof106 space cells

have been successfully run [10].

We wish to call this to the attention of the authors of the above

paper so that in future articles they may place their work in

proper perspective, and properly inform their readers of the

state-of-the-art.
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Comments on “Application of Boundary-Element
Method to Electromagnetic Field Problems”

N. MORITA, SEN1ORMEMBER,IEEE

The above paperl has explained a general formulation of the

boundary-element method (BE~ for analyzing two-dimensional

electromagnetic fields, and has presented numerical examples for
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some bounda~ shapes to show that the BEM is a very powerful

numericaf method for solving electromagnetic field problems. It

gives accurate results with far fewer nodes than the finite-element

method, and can also treat field problems in unbounded regions

without any additional complications.

I wonder, however, why such an argument is necessary now.

The BEM is not a new method, but just the surface integral

equation method which has already been proved to be a very

useful method in the areas of electromagnetic and other fields.

The literature is extensive on the analysis of electromagnetic field

problems by integral equations, on discussions of integral equa-

tions themselves, on their discretization methods, etc. References

[1] and [2] were probably the first to present a practical and

numerical technique using integral equations for electromagnetic

field problems. Several good books and review papers describing

the use of numerical techniques for integral equations have also

been published [3]-[6].

The discretization method in the BEM is explained in detail in

the above paper.1 The method shown is, however, just one of

many methods now available. It is the one based on the ap-

proximation of unknown functions by means of the triangular

subsectional functions, which has been proved to be more effec-

tive for some cases than the step function approximation [3], [7],

[8], [12]. Of course, there are many other better functions to be

used depending upon the problem to be solved.

In Section V of the above paper? an integral equation formula-

tion for scattering from dielectric bodies is presented. However,

the problem of scattering from material bodies, such as dielectric

and gyrotropic bodies, has been treated extensively in the past

literature. Various kinds of integral equations for analyzing these

problems are now available [9]–[14]. The set of equations given in

the above paperl is essentially the same as one of those used in

the past [11], [15], [16], and can easily be derived using the

integral relation on the incident field. In addition, the equation

shown is inferior to ones used in the past since the term involving

the incident wave is unnecessarily complex. Furthermore, the

problem of erroneous resonant solutions involved in these types

of equations is not stated at all. The problem of non-uniqueness,

which is often associated with simple surface integral equations,

has been discussed by many researchers [17]-[22], [13].

I would like to add that the above paperl treats only the

two-dimensional problems, even though a lot of numerical results

have already been given for three-dimensional electromagnetic

field problems. (Some of these can be found in the list of

References.)

Finally, I don’t think that the whole literature on the integral

equation formulation can be neglected by using the “anesthetic”

by the name of the “ boundaty-element method,” of which only

the label is new.

The author wishes to thank Prof. R. F. Barrington for careful

reading of the manuscript.

Rep~2 by Shin Kagami and Ichiro Fukai3

The authors of the original paperl were aware of the previous

works on the electromagnetic field analysis using the boundary

integral equation method (BIE) and they consider that the
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boundary-element method (BEM) is based on BIE. However,

they thought that the BIE was a common numerical technique

already established and confirmed generally in this field, so that

they did not refer to it individually.

In the original paper, the authors aimed to emphasize the

facility of the application of the BEM, which is an “element

method” and whose discretizing technique is like that of the

finite-element method (FEM). These facts cause the BEM to

become a very powerful numerical method. It is very easy to

perform programming for computers. In addition, it adopts sim-

ple and general expressions (for example, the equation having a

general variable-a single scalar potential), so that the formulation

is performed about the scalar Helmholtz’s equation, and when

actuaf problems are treated, a proper boundary condition is

imposed on the above potential. Moreover, the same program can

be used for different cases (for example, for the case of sound

problems). Its govenng equation is also the scaler Helmholtz’s

equation, but its boundary condition is different from that of the

electromagnetic field problem.

Finally, the authors would like to thank Dr. N. Morita for his

remarks and for providing [10], [20], and [21].
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Comments on “Limitations of the Cubical Block

Model of Man in Calculating SAR Distributions”

MARK J, HAGMANN, MEMBER, IEEE

The above paperl raised some serious questions regarding the

accuracy of three-dimensional block model solutions obtained

using a pulse-function basis. While I am in qualitative agreement

with about half of the numerical results presented in the paper, I

most strongly disagree with most of the interpretations which the

authors have made using those results. It is my belief that it is

possible to obtain high accuracy with block model solutions if

sufficient care is used in their implement~tion. I have chosen to

use a pulse-function basis with block models of man since this

appears to allow the model to have much greater detail than is

possible with more elaborate bases.

The paper incorrectly stated that I have given “an upper limit

on the dimensions of cells for the required accuracy” and inferred

that such a limit was satisfied in their solutions. In earlier work

with one of the authors (Durney), it was shown that the size of

each cell must not be much greater than the reciprocal of the

magnitude of the complex propagation vector, but this was

presented as a condition that is necessary but not sufficient for

convergence [2]. Pulse functions are only appropriate if the

electric field is slowly varying over the volume of each cell. The

electric field will have sizable variation within some objects even

in static solutions. One case in point is th~ dielectric cube which

the authors unfortunately chose to use as an example.

The solution for a 27-cell block model of a dielectric cube, as

presented in the article, is very far from convergence. While an

exact solution is not available for the dielectric cube, it is gener-

ally known that the electric field is highly heterogeneous near the

corners and edges. While I have not obtained a solution for a

cube having the exact parameters used by the authors, the results

of earlier studies [3], [4], as well as recent work using as many as

2744 cells, suggests that the fields near comers and edges are

sufficiently intense that the true average SAR would be severaf

times greater than that calculated for a 27-ceil block model. I am

not surprised that subdividing the cell at the center of the cube

had little effect since it is well known that at low frequencies the

electric field at the center of a cube is the same as that at the

center of a sphere, and the solution for a small number of cells is

more like that for a sphere than a cube. I am also not surprised

that subdividing a cell at a corner or edge of the cube caused a

significant charnge in the SAR since these are regions where the

27-cell solution has the greatest error.
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